Binärer Informationsaustausch

Richtlinie für binären Informationsaustausch zwischen Selektivschutzeinrichtungen über einen Hilfskanal
Inhaltsverzeichnis

1. Anwendungsbereich und Zweck ... 6
2. Normative Verweisungen ... 7
3. Begriffe und Abkürzungen .. 8
 3.1 Begriffe ... 8
 3.2 Abkürzungen .. 8
4. Anforderungen an die Kommunikation ... 9
5. Anforderungen an die Testfähigkeit ... 10
6. Konfiguration und Anschlusstechnik .. 11
7. Asynchrones Übertragungsverfahren ... 13
 7.1 Architektur .. 13
 7.2 Physikalische Schicht ... 13
 7.3 Verbindungsschicht .. 13
 7.4 Anwendungsschicht .. 15
 7.5 Überprüfung und Fehlerbehandlung ... 16
8. Synchrones Übertragungsverfahren .. 17
 8.1 Architektur .. 17
 8.2 Physikalische Schicht ... 17
 8.3 Aufbau der Frames .. 18
 8.3.1 HDLC – Frame Struktur ... 18
 8.3.2 Der U – Frame ... 20
 8.3.3 Der I - Frame .. 21
 8.4 Grundlegende Prozeduren ... 24
 8.4.1 Allgemeines ... 24
 8.4.2 Login Prozedur .. 24
 8.4.3 Telegrammquittierung und Empfangsfolgezähler 25
 8.5 Informationsobjekte der Anwendungsschicht 28
8.6 Fehlerbehandlung ... 29

9. Kompatibilität .. 31

9.1 Kommunikationskonfiguration .. 31

9.2 Physikalische Schicht ... 31

9.2.1 Übertragungsverfahren und -geschwindigkeiten .. 31

9.2.2 Optische Faser ... 32

9.2.3 Steckverbinder ... 32

9.2.4 Parametrierung .. 33

10. Anhang A ... 34

Stromversorgung nachrichtentechnischer Einrichtungen ... 34

11. Anhang B ... 36

Schutzsignalübertragung über digitale Übertragungsnetze .. 36

B1 Einleitung .. 36

B2 Signallaufzeiten in einem digitalen Übertragungsnetz ... 36

B3 Schutzsignalübertragungseinrichtung ... 37

B4 Schnittstellen zwischen Schutz- und Übertragungstechnik 38

B5 Übertragungswegführung und Wegumschaltung .. 39

B6 Stromversorgung .. 41

B7 Schlussfolgerungen ... 41
Vorwort

Der sachliche Inhalt des Hauptteils dieser Richtlinie soll ohne die Anhänge als Grundlage eines internationalen Norm-Entwurfes für das Technische Komitee TC 95 der Internationalen Elektrotechnischen Kommission (IEC) dienen.

Da beide Papiere inhaltlich zusammengehören, wurden Sie in der vorliegenden Richtlinie zusammengefasst. Sie wurde vom Vorstand des VDN als technische Richtlinie verabschiedet und wird den Mitgliedsunternehmen zur Anwendung empfohlen.
1. Anwendungsbereich und Zweck

Diese Richtlinie gilt für den Informationsaustausch zwischen Selektivschutzeinrichtungen in Hoch- und Mittelspannungsnetzen mittels serieller Übertragung über Kommunikationskanäle für Schutzprinzipien mit dem Austausch binärer Informationen (z.B. Signalvergleich, Mitnahme).

Mit Hilfe der in dieser Richtlinie getroffenen Festlegungen ist ein kompatibler Datenaustausch zwischen Selektivschutzeinrichtungen möglich. Die Richtlinie ist nach dem OSI-Schichtenmodell für offene Kommunikationssysteme gegliedert.

Für Schutzsysteme mit Austausch binärer Informationen stehen alternativ zwei Übertragungsverfahren zur Auswahl, die in den Abschnitten 7 und 8 beschrieben sind.

ANMERKUNG: Zusätzlich zu den Festlegungen für Schutzprinzipien mit dem Austausch binärer Signale in heterogenen Schutzkonzepten mit Geräten verschiedener Hersteller, werden Anforderungen an das Übertragungssystem (Schicht 1) festgeschrieben, die für homogene Systeme mit Geräten eines Herstellers für Messgrößen- und Phasenvergleichsprinzipien Anwendung finden können.
2. Normative Verweisungen

Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

IEC 60874-10-1:1997, Connectors for optical fibres and cables – Part 10-1: Detail specification for fibre optic connector type BFOC/2,5 terminated to multimode fibre type A1

ISO/IEC 13239:2002, Information technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures

ITU-T X.21:1992, Interface between data terminal equipment and data circuit-terminating equipment for synchronous operation on public data networks
3. Begriffe und Abkürzungen

3.1 Begriffe

Loop-Back-Betrieb

Der Loop-Back-Betrieb wird zum Test der Kommunikationsverbindung verwendet. Im Loop-Back-Betrieb können Sende- und Empfangskanal an beliebigen Stellen des Übertragungssystems kurzgeschlossen werden um die zwischen Selektivschutzeinrichtung und Kurzschlussstelle liegenden Übertragungseinrichtungen zu überprüfen.

3.2 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>Cyclic redundancy check</td>
</tr>
<tr>
<td>DÜE</td>
<td>Datenübertragungseinrichtung</td>
</tr>
<tr>
<td>FCS</td>
<td>Blockprüfeichenfolge (en: frame check sequence)</td>
</tr>
<tr>
<td>HDLC</td>
<td>High level data link control</td>
</tr>
<tr>
<td>Linecode FM0</td>
<td>Digital Encoding with a level transition at all bit edges and transition at the center of the bit time for a bit value of '0', named Bi-Phase Space (FM0)</td>
</tr>
</tbody>
</table>
4. Anforderungen an die Kommunikation

Bei Anschaltung von Schutzeinrichtungen an die Übertragungstechnik sind die für Schutzeinrichtungen geltenden Randbedingungen zu beachten. Die ordnungsgemäße Funktion der Kommunikation für Schutzsysteme muss auch während Netzkurzschlüssen oder Fehlern in der Hochspannungsanlage sichergestellt sein.

Kurzschlüsse in Hilfsenergiekreisen der Kommunikationstechnik müssen in weniger als 20 ms abgeschaltet werden. Diese Zeitspanne muss von den Stromversorgungen der Kommunikationseinrichtungen überbrückt werden.

Bezüglich der maximal zulässigen Unterbrechungszeit der Stromversorgung unterliegen Schutzeinrichtungen DIN IEC 60255-11. Übertragungseinrichtungen unterliegen DIN EN 60255-6 (VDE 0435 Teil 301), wenn sie integraler Bestandteil der Schutzeinrichtungen sind (siehe Anhang A).

Die maximale Übertragungszeit des Kommunikationskanals soll 10 ms nicht überschreiten.
5. Anforderungen an die Testfähigkeit

Im kommunikationstechnischen Testbetrieb (Loop-Back Betrieb) sollen durch Kurzschließen der Sende- und Empfangsleitung an beliebigen Stellen des Übertragungssystems die zwischen Selektivschutzeinrichtung und Kurzschlussstelle liegenden Übertragungseinrichtungen überprüfbar sein. Für Diagnosezwecke überwachen und dokumentieren die kommunizierenden Geräte die Qualität der Kommunikationsverbindung.

Mit dem schutztechnischen Testbetrieb muss eine komplette Funktionskontrolle der Wirkverbindung zwischen den Schutzgeräten an jedem Leitungsende möglich sein. Für diesen Zweck wird vom schutztechnischen Testgerät ein Testsignal zum Gegengerät gesendet, von diesem gespiegelt und bei richtiger Übertragung vom Testgerät wieder empfangen. Das Testsignal darf am Gegengerät nicht zur Auslösung des Leistungsschalters führen.
6. Konfiguration und Anschlusstechnik

Die Zeichenruhelage wird projektspezifisch festgelegt (siehe Abschnitt 9).

Für die Anschlüsse der Lichtwellenleiter an die DÜE der Selektivschutzeinrichtung sind Lichtwellenleiterstecker der Bauart BFOC/2,5 entsprechend IEC 60874-10-1 „BFOC/2,5 Fibre optic connector type terminated to multi-mode fibre type A1“ zugelassen. Es gelten die in Tabelle 1 getroffenen Festlegungen (Nahbereich: typisch <= 1000m).
Eigenschaften	Gradientenfaser \(^1\)
Steckverbinder | BFOC/2,5
Optische Wellenlänge | 820 - 860 nm
Temperaturbereich | -5...+55°Celsius
Sendeleistung | min. -16dBm
Empfangsleistung | min. -24dBm
Systemreserve | Min. + 3 dB

Tabelle 1 Kompatibles Lichtwellenleiter-Übertragungssystem

\(^1\) Bei Gradientenfasern stehen alternativ die Fasern 50/125 μm oder 62,5/125 μm zur Verfügung. Die in Tabelle 1 genannten Werte beziehen sich auf eine 62,5/125 μm-Faser.

Weitere mechanische Festlegungen zu Einbaulage, Kabelführung und -entlastung sind hersteller spezifisch und werden nicht vorgegeben.
7. Asynchrones Übertragungsverfahren

7.1 Architektur

Gemäß ISO/OSI Schichten-Architekturmodell werden die folgenden Schichten genutzt:

<table>
<thead>
<tr>
<th>Schicht</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsschicht 7</td>
<td>Informationselemente gemäß Abschnitt 7.4</td>
</tr>
<tr>
<td>Verbindungsschicht 2</td>
<td>gem. Abschnitt 7.3</td>
</tr>
<tr>
<td>Physikalische Schicht 1</td>
<td>Schnittstelle der Selektivschutzeinrichtungen gem. Abschnitt 6</td>
</tr>
</tbody>
</table>

Tabelle 2 ISO/OSI Schichten Architektur

7.2 Physikalische Schicht

Die Standard-Übertragungsgeschwindigkeiten sind:

- 1,2 kbit/s
- 2,4 kbit/s
- 4,8 kbit/s
- 9,6 kbit/s
- 19,2 kbit/s
- 38,4 kbit/s

7.3 Verbindungsschicht

Es wird ein UART-Protokoll mit fester Länge verwendet. Das Telegramm besteht aus 3 Oktetteten mit je einem Start- und Stopp-Bit und hat somit eine Gesamtlänge von 30 Bit.

Ein Telegramm wird als geschlossener Block übertragen. Zwischen den Telegrammen ist eine Pause von mindestens 8 t₀ (t₀ = Dauer eines Bits) und höchstens 10 t₀ einzufügen, um die Synchronisation zu vereinfachen.
Geräteadresse

Die 4 Bit Geräteadresse ist eine eindeutige Kennzeichnung eines Gerätes. Hier wird die Adresse des Gerätes in Senderichtung (Quelladresse) und in Empfangsrichtung (Empfangsadresse) getrennt eingestellt (Einstellbereich 1...10). Die Adresse 0 wird ausschließlich für den Testbetrieb verwendet, vgl. Abschnitt 5.

Die Bit-Codierung der Adressen ist so gewählt, dass diese nie identisch zu den an gleicher Position angeordneten Informationsinhalten codiert sind.

<table>
<thead>
<tr>
<th>Adresse</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Loop-Back</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3 Codierung der Adressen
Datencodierung
In insgesamt 12 Bit werden die auszutauschenden 8 binären Signale verschlüsselt. 4 Signale werden als 1-Bit und 4 Signale in 2-Bit codiert, um die Datenintegrität zu erhöhen.

Dabei sind die 4 1-Bit Informationen im ersten Oktett enthalten und je 2 der 2-Bit Informationen auf die zwei anderen Oktette verteilt.

CRC-Checksumme
Die 8 Bit CRC-Checksumme (CRC = Cyclic Redundancy Check) dient zur Datensicherung auf dem Übertragungskanal. Die 8 Bit CRC Daten sind als je 4 Bit in Oktett 2 und 3 enthalten.

Zur Berechnung der CRC-Checksumme wird folgendes Generatorpolynom verwendet:
\[G(x) = x^8 + x^7 + x^5 + x^4 + x + 1 \] (CRC-8)

7.4 Anwendungsschicht

Anlauf
Mit dem Einschalten der Schutzeinrichtung bzw. dem Aktivieren der Funktion für den Austausch binärer Signale beginnt die Schutzeinrichtung mit dem Aussenden von Datenblöcken, auf den sich die empfangende Seite aufsynchronisiert.

Normalbetrieb
Im Normalbetrieb senden die Schutzeinrichtungen fortlaufend Telegramme gem. Abschnitt 7.3.

Für das asynchrone Übertragungsverfahren werden die folgenden Informationselemente empfohlen (alle Elemente müssen generell frei konfigurierbar sein).
<table>
<thead>
<tr>
<th>Informationselement</th>
<th>Information</th>
<th>Empfohlene Lieferstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>konfigurierbar</td>
<td>Bit 1 = 1: Distanz-/Überstromzeitschutz Senden L1</td>
</tr>
<tr>
<td>Bit 2</td>
<td>konfigurierbar</td>
<td>Bit 2 = 1: Distanz-/Überstromzeitschutz Senden L2</td>
</tr>
<tr>
<td>Bit 3</td>
<td>konfigurierbar</td>
<td>Bit 3 = 1: Distanz-/Überstromzeitschutz Senden L3</td>
</tr>
<tr>
<td>Bit 4</td>
<td>konfigurierbar</td>
<td>Bit 4 = 1: Erdfehlerrichtungsschutz Senden L1</td>
</tr>
<tr>
<td>Bit 5</td>
<td>konfigurierbar</td>
<td>Bit 5 = 1: Erdfehlerrichtungsschutz Senden L2</td>
</tr>
<tr>
<td>Bit 6</td>
<td>konfigurierbar</td>
<td>Bit 6 = 1: Erdfehlerrichtungsschutz Senden L3</td>
</tr>
<tr>
<td>Bit 7</td>
<td>konfigurierbar</td>
<td>Bit 7 = 1: Echo für freigabeverfahren</td>
</tr>
<tr>
<td>Bit 8</td>
<td>konfigurierbar</td>
<td>Bit 8 = 1: Signale werden im Testmodus gesendet</td>
</tr>
</tbody>
</table>

Tabelle 4 Informationselemente

Signale von nicht konfigurierten Informationselementen werden an der entsprechenden Bitposition zu 0 gesetzt.

7.5 Überprüfung und Fehlerbehandlung

Von der empfangenden Station werden folgende Regeln überprüft:

- fortlaufender Empfang von Telegrammen gemäß Abschnitt 7.3
- korrektes Framing mit Start/Stop-Bit und Adresse
- Überwachung der korrekten komplementären Codierung der Datenbits 5 bis 8
- Überwachung der CRC-Checksumme

Die Auswertung und Anzeige von Fehlern, statistische Analysen sowie die Reaktion der Selektivschutzeinrichtung sind herstellerspezifisch und nicht Bestandteil dieser Richtlinie.
8. Synchrones Übertragungsverfahren

8.1 Architektur

Für das synchrone Übertragungsverfahren kommt folgende Norm zur Anwendung:

ISO/IEC 13239, Information technology - Telecommunications and information exchange between systems - High-level data link control (HDLC) procedures.

Gemäß ISO/OSI Schichten-Architekturmodell werden die folgenden Schichten genutzt:

<table>
<thead>
<tr>
<th>Schicht</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsschicht 7</td>
<td>Informationsobjekte gemäß Abschnitt 8.5</td>
</tr>
<tr>
<td>Vermittlungsschicht 3</td>
<td>Auswahl aus</td>
</tr>
<tr>
<td>Verbindungsschicht 2</td>
<td>ISO/IEC 13239: HDLC procedures</td>
</tr>
<tr>
<td>Physikalische Schicht 1</td>
<td>Schnittstelle der Selektivschutzeinrichtungen gemäß Abschnitt 6</td>
</tr>
</tbody>
</table>

Tabelle 5 ISO/OSI Schichten Architektur

8.2 Physikalische Schicht

Spezielle Testbetriebsarten für die Selektivschutzfunktionalität haben keinen Einfluss auf die Übertragungseinrichtung.

Für die Taktgenerierung der synchronen Verbindung müssen zwei Betriebsfälle unterschieden werden:

die direkte LWL – Verbindung

der Anschluss an das Telekommunikationsnetzwerk.
Bei einem Anschluss an das Telekommunikationsnetzwerk ist die Schnittstelle zum Netzwerk Taktmaster, d.h. der von ihr erzeugte Takt ist für beide Datenleitungen, Tx und Rx, bin-
dend. Der Takt aus dem Rx –Signal muss intern überbrückt und für das Tx –Signal verwen-

8.3 Aufbau der Frames

8.3.1 HDLC – Frame Struktur

In diesem Abschnitt werden die einzelnen Bestandteile des HDLC- Frames und deren Be-
deutung festgelegt.

Es werden folgende Festlegungen getroffen:

Die Länge der Frame Check Sequence (Blockprüfzeichenfolge) eines HDLC - Frames beträgt 32 Bit; sie wird gebildet nach ISO/IEC 13239

- die Geräteadresse hat die Länge von 16 Bit
- die Telegramm - ID hat die Länge von 8 Bit.

Alle zu übertragenden Bits inklusive der Start - und Stopp - Flags bilden einen HDLC – Fra-
me. Die beiden auf das Start-Flag folgenden Oktette bilden die Geräteadresse.

1 Der Begriff „Frame“ wird in diesem Dokument gleichbedeutend mit „Telegramm“ verwen-
det

© Verband der Netzbetreiber – VDN, Februar 2006
Bild 4: HDLC-Frame

<table>
<thead>
<tr>
<th>HDLC – Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-Flag (1 Oktett)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Auswahl aus ISO/IEC 13239:
Blockbegrenzungsfolge, bezeichnet als **Start-Flag oder Stopp-Flag**.

Geräteadresse
Die Geräteadresse ist eine eindeutige Kennzeichnung eines Schutzgerätes. Sie ist die Schicht 2 Adresse.

Blockprüfeichenfolge, bezeichnet als **Frame Check Sequence** oder FCS.

Festlegungen in dieser Richtlinie.

Telegramm - ID
Die Telegramm - ID dient zur Identifizierung der Telegramme. Sie ist die Schicht 3 Adresse.

Empfangsfolgezähler
Der Empfangsfolgezähler dient zur Kontrolle der Kommunikation sowie für den Telegramm-Quittierungsdienst.

Verwendete Frame-Typen
Für die hier beschriebene Anwendung einer Punkt zu Punkt Verbindung, ‘point-to-point-connection’, ist die Definition von zwei Frame-Typen ausreichend. Es sind dies:
- der **U-Frame**
- der **I-Frame**
8.3.2 Der U-Frame

Der U-Frame enthält keine Daten der Anwendungsschicht. U-Frames werden für Etablierung, Test und Steuerung der Schichten 2 und 3 gesendet. Der U-Frame ist durch das höchstdwertige Bit in der Telegramm ID gekennzeichnet. Wenn das Bit **nicht** gesetzt ist wird ein U-Frame übertragen.

Der korrekte Empfang eines U-Frames wird vom Empfänger nicht quittiert.

Receive-Ready-Frame

Der Receive-Ready-Frame (RR-Frame) wird für Aufbau, Test und Überwachung der physikalischen Kommunikationsverbindung verwendet. Der RR-Frame ist ein ‘general call’ mit der Geräteadresse 0000H. Die Telegramm-ID ist in diesem Frame nicht notwendig. Um aber eine durchgängige Auswertung der Telegramme zu garantieren und eine höhere Datensicherheit zu gewährleisten, wird die Telegramm-ID auf den Wert 00H festgelegt. Der Empfang eines RR-Frames bedeutet, dass eine physikalische Verbindung zwischen zwei Schutzgeräten besteht.

Bild 5 Receive Ready – Frame

Der Login - Frame

Ein weiterer U-Frame mit ‘general call’ - Eigenschaften ist der Login - Frame. Im Gegensatz zum RR- und Test-Frame transportiert der Login-Frame auch Schicht 3 Information. Bei einem gelungenen Kommunikationsaufbau ist der Login-Frame der letzte gesendete ‘general call’ und somit auch der letzte U-Frame. Da im Login-Frame die eigene Geräteadresse der Gegenstelle bekannt gegeben wird, muss die Gegenstelle dann für die weitere Kommunikation diese Adresse verwenden.

8.3.3 Der I - Frame

Im Gegensatz zum U-Frame beinhaltet der I-Frame mindestens auch Schicht 3 Information. Durch einen Empfangsfolgezähler ist eine Quittierung der empfangenen Telegramme vorgesehen. Eine genauere Beschreibung der Quittierungsfunktion erfolgt in Abschnitt 8.4.3. Ein ‘general call’ ist mit einem I-Frame nicht definiert.

Der Aufbau des I – Frames

Die folgende Abbildung zeigt die Struktur des I-Frames.

<table>
<thead>
<tr>
<th>HDLC – Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-Flag (1 Oktett)</td>
</tr>
<tr>
<td>≠ 0000H ≠ FFFFH</td>
</tr>
</tbody>
</table>

Bild 7 Struktur eines I-Frames
Die Geräteadresse beim I-Frame

Beim Empfang von I-Frames enthält das Feld Geräteadresse die eigene Geräteadresse, da die Gegenstelle den HDLC-Frame mit der ihm bekannten Zieladresse versendet hat.

Aufbau der Dateneinheit in einem I - Frame

Bild 8 Aufbau der Dateneinheit in einem I-Frame

Die Telegramm ID beim I-Frame gibt die Anzahl der im Telegramm enthaltenen Informationenobjekte an.

<table>
<thead>
<tr>
<th>Bit Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 4</td>
<td>Informationsobjektanzahl, 4 Bit (1-16); gibt die Anzahl der Informationsobjekte an, die sich in einem Telegramm befinden. Entsprechend diesem Dokument sind 2 Informationsobjekte enthalten, vgl. Abschnitt 8.5, also: Bit 1 = 0, Bit 2 = 1, Bit 3 = 0, Bit 4 = 0</td>
</tr>
<tr>
<td>5-7</td>
<td>Bit 5 = 0, Bit 6 = 0, Bit 7 = 0</td>
</tr>
<tr>
<td>8</td>
<td>Bit 8 = 1: I - Frame (= U / I-Frame Bit)</td>
</tr>
</tbody>
</table>

Tabelle 6 Telegramm – ID
Im **Standard - Header** werden telegrammspezifische Daten übertragen (Empfangsfolgezähler, Telegram Quinnierung, Geräteadresse). Diese Daten werden von verschiedenenInformationsobjekten benötigt bzw. an der ISO/OSI - Schicht 3 terminiert. Um Redundanz zu vermeiden, werden diese Daten an dieser Stelle einmal zentral übertragen. Der Standard Header hat folgenden Aufbau:

<table>
<thead>
<tr>
<th>Feld</th>
<th>Größe [Bits]</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfangsfolgezähler</td>
<td>16</td>
<td>Bit 1 - Bit 8: (1..255) laufende Telegrammnummer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 9 – Bit 16: Quittung des ältesten noch nicht quittierten Telegramms</td>
</tr>
<tr>
<td>Sendende Adresse</td>
<td>16</td>
<td>Geräteadresse der Gegenstelle</td>
</tr>
<tr>
<td>Telegramm Flags</td>
<td>24</td>
<td>Bit 1 – Bit 24: 0</td>
</tr>
<tr>
<td>Total:</td>
<td>56 Bits</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7 Standard – Header

Die Telegrammnummer 0 ist nicht zugelassen. Der Wert 0 ist für den Fall reserviert, dass keine Telegramme mehr zu quittieren sind (vgl. Abschnitt 8.4.3).

Die **Informationsobjekte** sind typischerweise der Anwendungsschicht zuzuordnen (siehe Abschnitt 8.5). Dennoch wird hier ein Informationsobjekt beschrieben, das kommunikationspezifisch notwendig ist. Mit dem **Informationsobjekt – ID 20H** besteht die Möglichkeit zusätzliche Telegramme bei Telegramm-Überhang zu quittieren (vgl. Abschnitt 8.4.3). Es hat folgende Gestalt:

<table>
<thead>
<tr>
<th>Feld</th>
<th>Größe [Bits]</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informationsobjekt - ID</td>
<td>8</td>
<td>20H</td>
</tr>
<tr>
<td>zu quittierende Telegramme</td>
<td>24</td>
<td>Es können mit diesem Informationsobjekt bis zu 3 Telegramme quittiert werden. Dies erfolgt durch Eintragen der Telegrammnummern. Sollen weniger als 3 Telegramme quittiert werden, ist der Wert 00H einzutragen.</td>
</tr>
<tr>
<td>Total:</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8 Informationsobjekt Nr. 20H zur Quittierung bei Telegramm-Überhang

Auf die Verwendung des Informationsobjekts 20H wird in Abschnitt 8.4.3 in der Beschreibung zum Telegrammzyklus eingegangen.
8.4 Grundlegende Prozeduren

8.4.1 Allgemeines

8.4.2 Login Prozedur
Die Login Prozedur ist die erste elementare Funktion. Sie gliedert sich in zwei Teile:
- das Etablieren einer Verbindung (Schicht 1 und 2)
- die Validierung des Logins

Bild 9 Die Login Prozedur
8.4.3 Telegrammquittierung und Empfangsfolgezähler

Der Empfangsfolgezähler wird nur im I-Frame geführt. Der Empfangsfolgezähler ist Teil des Standard Header eines I-Frames, vgl. Abschnitt 8.3.3.

Der Empfangsfolgezähler hat zwei Aufgaben:

1. Er dient zur Kontrolle der Kommunikation und ist ein Indikator für die Stabilität der Kommunikation.
2. Er wird für den Telegramm-Quittierungsdienst der Schicht 3 verwendet.

Im Empfangsfolgezähler ist das erste Oktett für die Nummer des laufenden Telegramms reserviert, mit dem zweiten Oktett wird das älteste noch nicht quittierte und einwandfrei empfangene Telegramm quittiert.

Der Sender vergibt zyklisch jedem Telegramm eine Nummer von 1 bis 255. In einem der darauf folgenden Telegramme quittiert der Empfänger den Erhalt des Telegramms, indem er die empfangene Telegrammnummer erwidert.

Die Ziffer 0 ist reserviert, falls keine Telegramme mehr zu quittieren sind. Die maximale Nummer der nicht quittierten Telegramme darf den Wert 20 nicht überschreiten. Werden mehr als 20 Telegramme nicht quittiert, wird die Übertragung als nicht mehr zulässig abgebrochen und die Schutzgeräte müssen ein neues gegenseitiges Log-In ausführen.

Nachfolgend wird anhand von Beispielen die Abfolge bei der Telegrammquittierung beschrieben.

![Diagramm zur Telegrammquittierung](image)

Bild 10 Telegramm-Quittierung und Empfangsfolgezähler

Beim 3. Telegramm vom Schutzgerät A hat A bereits 2 Telegramme von B empfangen, Telegramm Nr. 2 und 3. Das Schutzgerät A hat einen Telegramm-Überhang von zwei Telegrammen. In diesem Fall quittiert A das zuerst eingetroffene aber noch nicht quittierte Telegramm, also das Telegramm Nr. 2. Das Telegramm Nr. 3 wird der Gegenstelle B erst beim Versenden des Telegramm Nr. 4 quittiert.

Gestörter Empfang

Unter gestörtem Empfang versteht man, dass aufgrund eines Fehlers in der Schicht 1 oder 2 ein Telegramm nicht an die Schicht 3 weitergeleitet werden kann und die Schicht 3 das Telegramm nicht quittieren kann. Das folgende Bild verdeutlicht den Sachverhalt.

![Diagramm zum gestörten Empfang](image_url)

Bild 11 Empfangsfolgezähler bei gestörtem Empfang

Unsymmetrische Telegrammlast

Die unsymmetrische Telegrammlast bedeutet, dass eine Endstelle mehr Telegramme sendet als die Gegenstelle. Somit kann die Gegenstelle den Überhang durch das "normale" Quittierverfahren nicht abbauen. Die folgende Abbildung skizziert die Verfahrensweise.

![Diagramm zeigt den Ablauf der Quittierung bei unsymmetrischer Telegrammlast.](image-url)

Bild 12 Empfangsfolgezähler bei unsymmetrischer Telegrammlast
Durch den Standard - Header kann maximal ein Telegramm pro gesendetem Telegramm quittiert werden. Bei unsymmetrischer Telegrammlast besteht die Möglichkeit durch das Einfügen des Informationsobjekts - Nr. 20H (16) (siehe Tabelle 8) drei weitere Telegramme zu quittieren.

Wird auf einer Kommunikationsseite ein unzulässiger Überhang von 20 Telegrammen festgestellt, gilt die Verbindung als nicht existent. Die Geräte müssen ein neues gegenseitiges Login ausführen.

8.5 Informationsobjekte der Anwendungsschicht

Informationsobjekt – ID

Die Informationsobjekt – ID dient zur Identifizierung der Informationsobjekte.

Mit **Informationsobjekt – ID 75H** werden Signale für Schutz-Signalverfahren übertragen.

<table>
<thead>
<tr>
<th>Feld</th>
<th>Größe [Bits]</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informationsobjekt - ID</td>
<td>8</td>
<td>75H</td>
</tr>
<tr>
<td>Reserve</td>
<td>8</td>
<td>= 0 (reserviert für künftige Erweiterungen)</td>
</tr>
<tr>
<td>Sendesignale</td>
<td>8</td>
<td>Bit 1 = 1: Distanz-/Überstromzeitschutz Senden L1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 2 = 1: Distanz-/Überstromzeitschutz Senden L2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 3 = 1: Distanz-/Überstromzeitschutz Senden L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 4 = 1: Erdfehlerrichtungsschutz Senden L1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 5 = 1: Erdfehlerrichtungsschutz Senden L2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 6 = 1: Erdfehlerrichtungsschutz Senden L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 7 = 1: Echo für Freigabeverfahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 8 = 1: Signale werden im Testmodus gesendet</td>
</tr>
</tbody>
</table>

Tabelle 9 Informationsobjekt Nr. 75H für Schutz-Signalverfahren

Falls für die Schutzfunktionen keine leiterselektiven Sendesignale zur Verfügung stehen, werden als gemeinsames Sendesignal jeweils alle drei Sendesignale der Schutzfunktion gleichzeitig angesteuert. Signale von nicht existenten Schutzfunktionen werden an der entsprechenden Bitposition zu 0 gesetzt.
Mit **Informationsobjekt – ID 50H** stehen 24 Binärkanäle zur freien Benutzung durch den Anwender zur Verfügung.

Anmerkung: Die Verknüpfung zwischen internem Schutzsignal (z. B. Fernauslösung, AUS in Z1 etc.) und zugehörigem Fernsignal kann vom Anwender im Rahmen der herstellerseitig angebotenen Verknüpfungsmöglichkeit vorgenommen werden.

<table>
<thead>
<tr>
<th>Feld</th>
<th>Größe [Bits]</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informationsobjekt – ID</td>
<td>8</td>
<td>50H</td>
</tr>
<tr>
<td>Summationsflag</td>
<td>8</td>
<td>= 0 (reserviert für künftige Erweiterungen)</td>
</tr>
<tr>
<td>Binärkanäle</td>
<td>24</td>
<td>Bit 1 = 1: Binärkanal 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 2 = 1: Binärkanal 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 23 = 1: Binärkanal 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 24 = 1: Binärkanal 24</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10 Informationsobjekt Nr. 50H für anwenderkonfigurierbare Binärkanäle

Signale von nicht benutzten Binärkanälen werden an der entsprechenden Bitposition zu 0 gesetzt.

8.6 Fehlerbehandlung

Aus den Schicht 2 bis 4 Operationen können folgende Fehler erkannt werden.

a) Verlust der Synchronität der Datenübertragung (Schicht 1)

b) Bit Fehler des empfangenen HDLC-Frames (Frame Check Sequence – Error, Schicht 2)

c) Keine Byte Ausrichtung (Non-Byte-alignment, Schicht 2)

d) HDLC-Frame zu lang (Schicht 2)

e) Überlauf des Empfangsspeichers im Kommunikationsprozessor (Schicht 2)

f) Unbekanntes Informationsobjekt (Schicht 3)

g) Falsche Telegrammlänge (Schicht 3)

h) Empfangsfolgezähler Fehler (Schicht 3)
i) Timeout
j) Die Bandbreite reicht nicht aus, es kommt zu einem Telegrammstau

Die folgende Tabelle zeigt mögliche Kommunikationsfehler und deren Ursache. Die Indizes a bis j korrespondieren zur obigen Auflistung.

<table>
<thead>
<tr>
<th>Kommunikationsfehler und Ursache</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitfehler im Telegramm</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitschlupf</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfehler im Start – Flag</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitfehler im Stopp – Flag</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unbekannte Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlust des Takts</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausfall der Verbindung komplett</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausfall der Verbindung Tx</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausfall der Verbindung Rx</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Überlast der Schnittstelle</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 11 Kommunikationsfehler und deren Ursache

Legende:
X wird mit einer großen Wahrscheinlichkeit erkannt
x kann erkannt werden, nicht unbedingt zwingend

Die Auswertung und Anzeige von Fehlern, statistische Analysen sowie die Reaktion der Selektivschutzeinrichtung sind herstellerspezifisch und nicht Bestandteil dieser Richtlinie.
9. Kompatibilität

In den vorangegangenen Abschnitten werden verschiedene Parameter und Alternativen vorgegeben. Der Anwender muss eine entsprechende Auswahl spezifizieren, um in einem Kommunikationssystem vollständige Kompatibilität zu erreichen.

Die folgenden Abschnitte sollen dem Anwender helfen, sein Kommunikationssystem zu definieren und damit Kompatibilität zwischen Einrichtungen verschiedener Hersteller sicherzustellen.

Die ausgewählten Parameter sind entsprechend anzukreuzen.

Anmerkung: Für die vollständige Festlegung eines Kommunikationssystems können zusätzliche Vereinbarungen im privaten Bereich notwendig sein, die z.B. herstellerspezifische Eigenschaften der Geräte nutzen. Diese sind ergänzend zu beschreiben und nicht Bestandteil dieses Abschnitts.

9.1 Kommunikationskonfiguration

☐ End-End-Konfiguration

9.2 Physikalische Schicht

9.2.1 Übertragungsverfahren und -geschwindigkeiten

☐ Asynchron

1200 bit/s

2400 bit/s

4800 bit/s

9600 bit/s
19200 bit/s
38400 bit/s

Synchron
x 64000 (..... x 64000 bit/s) bit/s

Direkte Kopplung über LWL

Kopplung über LWL, Kommunikationsumsetzer und digitales Datennetz

9.2.2 Optische Faser

Einsatz im Nahbereich

Gradientenfaser: 50/125 m 62,5/125 m

Einsatz im Fernbereich

Gradientenfaser 50/125 m 62,5/125 m

Monomodefaser

Definition der Ruhelage

Licht ein
Licht aus

9.2.3 Steckverbinder

BFOC / 2,5 (ST)
FC
9.2.4 Parametrierung

Grundsätzlich werden die Kommunikationsparameter für die Wirkschnittstelle herstellerspezifisch festgelegt und eingestellt. Eine kompatible Bezeichnung, die Wertebereiche der Parameter sowie eine harmonisierte Einstellanweisung wird nicht vorgegeben.
10. Anhang A
(informativ)

Stromversorgung nachrichtentechnischer Einrichtungen

Die Stromversorgung der nachrichtentechnischen Einrichtungen zur Schutzsignalübertragung muss insbesondere zwei Aspekte beachten.

Das sind einerseits die Reaktion der Techniksysteme auf kurzzeitigen Spannungsausfall und andererseits die Aufteilung der Gleichspannungsversorgung (GS-Versorgung) in getrennt abgesicherte Kreise, die die Unabhängigkeit redundanter Schutzsysteme gewährleisten.

Reaktion auf kurzzeitigen Spannungsausfall

Für die Beherrschung kurzzeitiger Unterbrechungen der GS-Versorgung sind die unterschiedlichen Zeitforderungen

der Schutztechnik (nach Überbrückung von 50 ms) und
der Übertragungstechnik (nach Überbrückung von 20 ms)
zu betrachten.

Zur Klärung, ob beide Forderungen miteinander verträglich sind oder nicht, ist der auftretende Sachverhalt maßgebend.

Sowohl Schutz- als auch Übertragungseinrichtungen werden für einen zulässigen Spannungsbereich ihrer GS-Versorgung ausgelegt.

Da Kurzschlüsse in parallel versorgten GS-Kreisen bis zu ihrer Abschaltung durch Sicherungen (ggf. auch durch Automaten) durchaus zu Spannungen kleiner 176 V führen können, wurde die Forderung aufgestellt, dass das Schutzsystem ohne Störung seiner Funktion arbeiten muss, wenn dieser Spannungseinbruch kürzer als 50 ms ist. Daraus folgt, dass jeder GS-Kurzschluss, der zur Unterschreitung dieser Spannung an Schutzrelais führt, in weniger als 50 ms durch die betroffene Sicherung abgetrennt sein muss. Diese Festlegung beruht auf der Erfahrung, dass mit geeignet gewählten Sicherungen unter den üblichen Bedingungen eines Umspannwerkes eine solche Zeit einhaltbar und in etwa erforderlich ist.
Für die GS-Versorgung der Übertragungstechnik müssen nicht die 50 ms der Schutztechnik gefordert werden, wenn alle Kurzschlüsse in parallel versorgten GS-Kreisen in weniger als 20 ms abgeschaltet werden. Damit kann die Auslegung der Übertragungstechnik für Spannungseinbrüche von bis zu 20 ms erfolgen.

Für die Stromversorgung der Übertragungstechnik besteht darüber hinaus in der Regel die Möglichkeit, neben der Hauptenergieversorgung eine Reserveenergieversorgung anzuschließen. Der Übergang zwischen beiden muss in jedem Fall ohne Funktionsstörung erfolgen.

Aufteilung der GS-Versorgung in getrennt abgesicherte Kreise

In den Schutzsystemen ist es die Regel, dass sich gegenseitig reservierende Systeme über getrennt gesicherte Kreise mit Hilfsenergie versorgt werden, und dass schaltfeldgebundene Schutzeinrichtungen auch über schaltfeldgebundene GS-Kreise versorgt werden.

Bei der Anschaltung von mehreren Schutzeinrichtungen eines Umspannwerkes an die Übertragungstechnik ist einerseits der Übergang von schaltfeldgebundener zu schaltfeldunabhängiger GS-Versorgung sorgfältig zu wählen und andererseits die Unabhängigkeit redundanter Schutzsysteme durch entsprechende Anschaltung an die Übertragungssysteme zu sichern.

11. Anhang B
(informativ)

Schutzsignalübertragung über digitale Übertragungsnetze

B1 Einleitung

Die Nutzung eines digitalen Übertragungsnetzes, dessen Kanäle für unterschiedlichste Aufgaben verschiedener Bedarfsträger zur Verfügung gestellt werden, auch für Übertragungsaufgaben des Kurzschlussschutzes erfordert detaillierte technische und organisatorische Festlegungen und Abstimmungen.

Nachfolgend werden daher die Gesichtspunkte dargelegt, die zu beachten sind, wenn eine Schutzsignalübertragung über digitale Übertragungsnetze realisiert wird.

B2 Signallaufzeiten in einem digitalen Übertragungsnetz

Als Grenzen des digitalen Übertragungsnetzes werden die nachrichtentechnischen Verteiler zum Anschluss der Nutzerkanäle betrachtet. Um die Laufzeit eines Nutzsignals zwischen diesen Endpunkten zweier Stationen abzuschätzen, sind nachfolgende Zeitkomponenten zu beachten: Umsetzzeit in der Schnittstellenbaugruppe (Analog/Digital-Wandlung, Umkodierung von Protokollen, Seriell-/Parallelwandlung usw. je nach Schnittstellentyp) in jedem Fall 0,125 ms.

- Durchlaufzeit durch digitalen Knoten 0,25 ms. Bei je einem Knoten an beiden Endpunkten in Summe 0,5 ms.

- Laufzeit des Signals im Medium Luft (Funk) 0,33 ms/100 km und im Medium Glas (LWL) ca.0,5 ms/100 km.

- Signalverzögerung durch elastische Speicher und Pufferspeicher für eine bit-fehlerfreie Umschaltung (z.B. bei Richtfunk mit Raumdiversity und 1+1 Heißreserve) und durch
FEC (Fehlerkorrektur) abgeschätzt mit 0,034 ms bei 34-Mbit/s-Übertragung und 0,120 ms bei 8-Mbit/s-Übertragung.

- Darüber hinaus ist die Varianz der Laufzeit z. B. durch Jitter oder durch Neusynchronisierung im Umfang von maximal 1 ms zu berücksichtigen.

- Einfluss des Übertragungsverfahrens aus Sicht des Gerätes, das den Übertragungsweg nutzt. Überträgt beispielsweise ein Schutzsignalübertragungsgerät die gewollte Information über einen 64-kbit-Kanal in 10 Zyklen von je 0,125 ms, so ergibt sich eine zusätzliche Zeit von 1,25 ms.

Der Vergleich der Zeiten zeigt, dass praktisch die Zahl der benutzten Knoten im digitalen Netz und die Zahl der zu übertragenden 2 Mbit/s-Rahmen maßgebend für die Laufzeit sind. Bei großen Entfernungen ist zusätzlich die Laufzeit des Signals im Medium zu beachten.

B3 Schutzsignalübertragungseinrichtung

Wenn die Schutzinformationen über Kontakte ausgegeben werden, ist es bei der Kopplung digitaler Schutzeinrichtungen über ein digitales Übertragungsnetz erforderlich, eine Schutzsignalübertragungseinrichtung als funktionelle Baugruppe einzusetzen.

Nach der vorgenannten Richtlinie ist es erforderlich, schon bei der Planung des Schutzsignalübertragungssystems eine Auswahl aus zwei alternativen Schnittstellen zu treffen:

- Schnittstelle mit asynchroner Übertragung oder
- Schnittstelle mit synchroner Übertragung.

In beiden Fällen werden die Schutzinformationen über eine optische Schnittstelle (Bauart BFOC/2,5) ausgegeben.

Die Schutzsignalübertragungseinrichtung muss außerdem, unabhängig davon, ob sie als getrennte Einrichtung oder als integraler Bestandteil des Schutzes existiert, den Übertragungskanal auf seine Funktionsfähigkeit überwachen. Dabei sind bei Nutzung des digitalen Weitverkehrsnetzes auch kurzzeitige Ausfälle im ms-Bereich zu erfassen, wenn sie Konse-
quenzen für die jeweilige Schutzfunktion haben. Eine solche auf den einzelnen Kanal bezogene Überwachung kann die digitale Übertragungstechnik mit vertretbarem Aufwand nicht als Signal bereitstellen.

Die Schutzsignalübertragungseinrichtung ist abhängig von ihrer Realisierung mit einer Eigengewicht verknüpft, die zur Signallaufzeit zu addieren ist.

B4 Schnittstellen zwischen Schutz- und Übertragungstechnik

Für die weitere Betrachtung wird als Schnittstelle des Schutzsystems in Richtung des digitalen Weitverkehrsnetzes eine digitale serielle Signalschnittstelle mit Übertragungsprotokoll vorausgesetzt. Sie ist unabhängig davon, ob sie am Distanz- oder Vergleichsschutzgerät selbst oder an einer nachgeschalteten Einrichtung vorhanden ist, zwingend notwendig. Eine entsprechende Schnittstelle ist auch in Stationsleittechniken sowie in Fernwirkeinrichtungen für digitale Informationsübertragung notwendig und vorhanden.

Diese Schnittstelle liegt abhängig vom Gerätesystem in optischer oder elektrischer Form vor. In beiden Fällen erfordert die Kopplung mit dem digitalen Übertragungsnetz Maßnahmen, die sowohl den übertragungstechnischen Bedingungen als auch den Anforderungen der Nutzer (Schutz- bzw. Leittechnik) entsprechen müssen.

Nachfolgende prinzipielle Anordnungen sind möglich und treten abhängig von den örtlichen Bedingungen auf:

a) Die Schutzsignalübertragungsfunktion ist im Schutzgerät realisiert. Die Schutzsignale werden über eine optische Wirkschnittstelle ausgegeben und mittels LWL-Verbindung (bis ca. 1000 m) an einen dicht an der Telekommunikationseinrichtung installierten optisch-elektrischen Umsetzer geführt. Dessen nach ITU genormte elektrische Schnittstelle ist über eine kurze Verbindung an das digitale Weitverkehrsnetz geschaltet.
b) Die Schutzsignalübertragungseinrichtung bildet eine vom Schutzgerät getrennte Einheit. Sie ist in einem geringen Abstand vom Telekommunikationsgerät installiert. Zum digitalen Weitverkehrsnetz hin besteht eine elektrische Schnittstelle nach ITU.

- Bei nur geringer Entfernung ohne EMV-Beeinflussung kann die Verbindung zur Übertragungstechnik elektrisch hergestellt werden.
- Bei nicht mehr elektrisch überbrückbarer Entfernung oder bei möglicher Beeinflussung muss eine elektrisch-optische Umsetzung am Schutzsignalübertragungsgerät sowie eine optisch-elektrische Umsetzung nahe der Übertragungstechnik erfolgen. Es entsteht ein Zugangsübertragungssystem.

c) Die Konfiguration nach b) besitzt eine optische Schnittstelle zum digitalen Weitverkehrsnetz, z.B. eine im Schutzsignalübertragungsgerät integrierte optische Schnittstelle.

Zu beachten ist insbesondere bei optisch-elektrischen Umsetzern ohne Hilfsenergiebedarf die maximal überbrückbare Dämpfung auf der LWL-Strecke. Die optischen Parameter der Umsetzer an beiden Enden der Verbindung müssen aufeinander abgestimmt sein.

Als willkommene Nebenwirkung stellt die optische Verbindung eine Trennung zwischen den nach unterschiedlichen Normen elektrisch ausgelegten Systemen der Schutztechnik einerseits und der digitalen Übertragungstechnik andererseits dar.

Die transparente Übertragung muss gewährleisten, dass die Übertragungsstrecke keine die Funktion des Schutzsystems beeinflussende Telegrammveränderung herbeiführt.

B5 Übertragungswegführung und Wegumschaltung

eine eigenständige Einrichtung sein oder eine im Schutzgerät integrierte Funktion darstellen.

Es wird vorausgesetzt, dass die Wege 1 und 2 stromversorgungsseitig (siehe dazu Pkt. B6 bzw. Anhang A) unabhängig sind.

Das erfordert organisatorische Regelungen im jeweiligen Unternehmen.

Die in Bild 13 erkennbare Unabhängigkeit der Wege 1 und 2 muss auch erhalten bleiben, wenn Zwischenstationen (z. B. andere Umspannwerke) in einen oder beide Wege einbezogen sind.

Vergleichsschutzeinrichtungen, die durch Auswertung von Schleifenmessungen Signallaufzeiten ausgleichen, erfordern ggf., dass Hin- und Rückweg der Übertragung über den exakt
gleichen Weg verlaufen und damit gleiche Laufzeit aufweisen. Dies gilt ohne Einschränkung dann, wenn der Schutzalgorithmus unterschiedliche oder schwankende Laufzeiten nicht erkennt und ausgleicht.

B6 Stromversorgung

Dieser Teil ist in Anhang A eingeflossen.

B7 Schlussfolgerungen

Zusammenfassend kann festgestellt werden, dass

• die Nutzung von Kanälen des digitalen Weitverkehrsnetzes für die Schutzsignalübertragung unter den vorstehend definierten Randbedingungen möglich ist,

• durch die Art der Planung und Betriebsführung im digitalen Weitverkehrsnetz die Detailabstimmung der technischen und organisatorischen Lösungen zwischen Schutztechnikern und Nachrichtentechnikern gewährleistet sein muss und

• im Ergebnis von Festlegungen zur Gestaltung aller Elemente der Schutzsignalübertragung die Unabhängigkeit redundanter Wege sowie die Überwachung der Betriebsbereitschaft der Übertragungswege gesichert werden muss.
Bild 13 Anbindung von Schutztechnik an Übertragungswege – Weg 1 und Weg 2 über Knoten und LWL